Antriebstechnik Im Vergleich: Dezentrale und zentrale Servotechnik
Mit dezentraler Servotechnik lassen sich im Maschinen- und Anlagenbau Einsparpotenziale bei der Installation erzielen. Zwei weitere Vorteile sind reduzierte Wärmelasten im Schaltschrank und eine übersichtlichere Antriebsarchitektur. Lässt sich hieraus der Rückschluss ziehen, dass dezentral im Prozess platzierte Servoumrichter – ob losgelöst vom Motor oder als integrierte Lösung – per se die bessere Technik darstellen?
Anbieter zum Thema

Im Vergleich zur horizontalen Fördertechnik, bei denen dezentrale Frequenzumrichter schon seit Jahren zum gewohnten Bild gehören, bestimmt bei Applikationen mit hochdynamischer und präziser Motion-Control nach wie vor zentrale Servotechnik die Optik im Maschinenbau. Die Servoverstärker hängen – teils in Kombination mit weiteren Steuerungen zur Bewegungsführung oder auch schon mal mit einem ausgewachsenen IPC inside – geschützt von der Außenwelt im Schaltschrank. Die Verbindung zu den Motoren wird bei diesem Aufbau sternförmig installiert. Weil bei der zentralen Servotechnik die Verlustwärme zentral an einem Ort entsteht, ist eine wirksame Schaltschrankklimatisierung notwendig.
Die dezentrale Servotechnik folgt dem Grundprinzip, das die Motorregelung aus dem zentralen Schaltschrank heraus löst, um diese Aufgabe räumlich direkt einem Prozess zuzuordnen. Diese Architektur macht robuste Technik mit hoher Schutzart notwendig und kommt häufig bei räumlich verteilten Einzelachsen zum Einsatz. Die Vorteile liegen vor allem beim geringeren Installationsaufwand – insbesondere in puncto Motorkabel. Zwei weitere Vorteile sind das bessere EMV-Verhalten sowie die großflächige Verteilung der Verlustwärme, was den Aufwand für Schaltschrankklimatisierungen entsprechend reduziert.
Monetäre Einsparungen bei Installation und Montage
Die Einsparpotenziale der dezentralen Technik werden anhand einer realen Maschine mit acht Positionierachsen aus dem Bereich „Metallforming“ deutlich. Bisher war der zentrale Aufbau gekennzeichnet von Schaltschrankumrichtern, geschirmten Kabeln zwischen Motoren und Reglern sowie einer weiteren Leitung für das Rückführungssystem. Die erste Achse ist 5 m vom Schaltschrank entfernt, jede weitere 3 m weiter. Der Verkabelungsaufwand summiert sich bei den 8 Positionierachsen auf 248 m. Ist stattdessen die Kombination aus Kollmorgen-Versorgungsmodul AKD-C im Schaltschrank und acht dezentralen Servoreglern vom Typ AKD-N im Einsatz, reduziert sich die Länge auf 34 m. Die Berechnung: 5 m Hybridkabel mit Leistungsversorgung und Feedback zwischen Versorgungsmodul und dem am dichtesten liegenden dezentralen Servoregler. Dazu addieren sich jeweils noch mal 3 m zur Anbindung der weiteren sieben Achsen – macht 21 m. Bleibt noch die Versorgung der Motoren: Diese sind rund 1 m von den dezentralen Servoreglern AKD-N entfernt eingebaut. Weil die Kollmorgen-Lösung mit einer Einkabelanschlusstechnik ausgestattet ist, sind lediglich weitere 8 m Leitung notwendig. Zusammengerechnet bringt der Einsatz der dezentralen Servoregler allein bei der Installation eine Ersparnis von 86 % – von 248 m auf 34 m. Diese Zahlen lassen eine Vorstellung zu, welche Effizienzgewinne gerade bei OEMs in puncto Kabelkosten, Montage und Installation möglich sind. Noch gravierender fallen diese aus, wenn die Achsen zusätzliche I/Os aufweisen. Statt 372 m werden dann nur noch 42 m benötigt – was insgesamt Einsparungen von 89 % entspricht.
Ein weiterer Gewinn der Verlagerung der Antriebe in die Maschine resultiert aus dem Minus an Verlustleistung im Schaltschrank. Dieser Effekt sorgt für einen Minderbedarf an Klimatisierung – und sorgt damit direkt für Einsparungen sowohl beim OEM als auch beim Endkunden. Da eine Schaltschrank-Klimaanlage geringer dimensioniert werden kann oder sogar komplett entfällt, sinken die Kosten für Hardware und den späteren Betrieb – was letztlich auch die Energieeffizienz steigert.
(ID:42543647)