Suchen

Simulation Spinnprozesse mit Tausenden von Fasern simulieren und abbilden

| Redakteur: Juliana Pfeiffer

Polymerfasern als hitzebeständiges Material für Flugzeugturbinen beispielsweise werden in Spinnprozessen hergestellt. Die Prozesse in Gänze zu simulieren, war aufgrund der Komplexität bisher nicht möglich. Ein Simulationswerkzeug des Fraunhofer ITWM ändert dies nun.

Firmen zum Thema

Mit dem Simulationswerkzeug vom FRaunhofer ITWM lassen sich komplette Spinnprozesse erstmalig simulieren, besser verstehen und deutlich leichter optimieren.
Mit dem Simulationswerkzeug vom FRaunhofer ITWM lassen sich komplette Spinnprozesse erstmalig simulieren, besser verstehen und deutlich leichter optimieren.
(Bild: gemeinfrei / Pixabay )

Hitzebeständige Materialien für Flugzeugturbinen, Hygieneartikel und Bekleidung werden vielfach aus Polymerfasern hergestellt: Diese bestehen wiederum aus zahlreichen mikrometerdünnen Filamenten, die miteinander verzwirbelt werden. Die Filamente stellt man über Spinnprozesse her – ein Prozess, der ein wenig an eine Spaghettipresse erinnert. Dabei wird das Polymer zunächst mit Lösungsmittel vermischt, um es viskoser – also flüssiger – zu machen. Diese Spinnmasse wird durch eine Spinnplatte gepresst, eine Art Sieb mit Tausenden von Mikro-Löchern.

Die entstehenden hauchdünnen Filamente fallen durch einen mehrere Meter langen Schacht, werden dort mit Luft oder Gas trockengepustet und so vom Lösungsmittel befreit. Am Boden des Schachtes werden die einzelnen Filamente auf große Rollen aufgewickelt. Bisher gab es keinerlei Möglichkeit, solche Spinnprozesse in Gänze zu simulieren – die Abläufe sind einfach zu komplex, es müssten Milliarden von kleinsten Raumzellen simuliert werden. Um die Prozesse zu optimieren, mussten Unternehmen über 100.000 Euro für eine teure Pilotanlage ausgeben und für jeden der unzähligen Parameter Versuche zu fahren.

Bildergalerie

Komplette Aerodynamik der Anlage als Ergebnis

Forschende am Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern haben nun erstmals ein Simulationswerkzeug entwickelt, das Spinnprozesse mit Tausenden von Fasern abbildet. „Unsere Simulation erfasst nicht nur die Wechselwirkung aller Fasern mit der Gasströmung, sondern auch die Konzentration des Lösungsmittels in jeder einzelnen Faser“, erläutert Dr. Walter Arne, wissenschaftlicher Mitarbeiter am Fraunhofer ITWM. „Als Ergebnis erhält man also nicht nur die komplette Aerodynamik der Anlage – etwa das Geschwindigkeits- und Temperaturfeld sowie die Lösungsmittelverteilung – sondern auch alle relevanten Zustandsgrößen entlang der Faser, beispielsweise die Temperatur.“

Für produzierende Unternehmen heißt das: Sie können Problemen beim Herstellungsprozess schnell und einfach auf den Grund gehen, ihr Verständnis für die maßgeblichen Parameter vergrößern und neue Herstellungsprozesse vergleichsweise einfach auf größere Mengen umstellen. Ein Beispiel: Sind die Turbulenzen im Schacht zu groß, so dass die einzelnen Filamente immer mal wieder aneinanderstoßen und miteinander verkleben, können Dr. Arne und seine Kollegen die Strömungsführung mit Hilfe der Simulation untersuchen und sie durch neue Bauteile so optimieren, dass dieses Problem nicht mehr auftritt. Die Folge: Der Produktionsausschuss sinkt, die Qualität der Filamente steigt.

Mehrere Berechnungsschritte hintereinander

Verschiedene neue Funktionen ermöglichten es dem Forscherteam am Fraunhofer ITWM, den Aufwand der Simulation bewältigbar zu halten. „Wir gehen zunächst einmal von der Strömung im Schacht aus, wie sie ohne die Filamente wäre. Die Filamente selbst betrachten wir nicht als dreidimensionale ausgedehnte Objekte, sondern als eindimensionale Kurven“, erklärt Arne. Nun flattern jedoch nicht nur die Filamente in der Strömung, sondern sie wirken umgekehrt auch auf die Strömung ein. Denn da sie mit einer Geschwindigkeit von 1 bis 10 m/s gen Boden sausen, beschleunigen sie die Luft um sich herum – ähnlich wie ein vorbeisausender Zug dies tut. Um diese gegenseitige Wechselwirkung in der Simulation zu berücksichtigen, machen die Forschenden mehrere Berechnungsschritte hintereinander. So beginnen sie im ersten Schritt mit der Strömung ohne Filamente. Daraus berechnen sie die Bewegung und die Parameter der Filamente, und speisen diese Daten wiederum in die Berechnung der Strömung ein. Auf diese Weise rechnet die Simulation so lange „im Kreis“, man spricht dabei auch von Iteration, bis ein Gleichgewichtszustand erreicht ist und sich die Werte nicht mehr ändern.

BUCHTIPP Mit bionischen Verfahren lassen sich Bauteile so gestalten, dass sie mit minimalem Aufwand ihre strukturmechanischen Funktionen erfüllen. Das Praxishandbuch „Bionik in der Strukturoptimierung“ ist ein Nachschlagewerk für ressourceneffizienten Leichtbau für Konstrukteure, Entwickler und Studierende.

Eindimensionalen Darstellung

Eine Information, die für die Optimierung des Spinnprozesses relevant ist, gibt die Simulation auf diesem Wege jedoch noch nicht: Wie ist das Lösungsmittel in den Filamenten verteilt? Denn während sie außen durch den Luftstrom sehr schnell trocknen, hält sich das Lösungsmittel im Inneren recht lange. Doch die Filamente werden eindimensional betrachtet – so als ob sie keine Ausdehnung und somit keinen Querschnitt hätten. Eine dreidimensionale Betrachtung sprengt den Rahmen des Machbaren. Auch hier greifen die Wissenschaftler in die „Trickkiste“: Sie bleiben bei der eindimensionalen Darstellung, ergänzen diese allerdings um eine weitere Komponente, und zwar um die radiale Verteilung des Lösungsmittels. Wie viel Lösungsmittel befindet sich im Inneren des Filaments, wie viel am Rand?

SEMINARTIPP Das Seminar „Konstruktionsbionik“ vermittelt einen Überblick zu den Möglichkeiten der Bionik bei der Entwicklung neuer Produkte. Die Teilnehmer gehen selbst auf bionische Lösungssuche und lernen die Prinzipien der bionischen Gestaltoptimierung kennen.
Weitere Informationen

Einblick in bisher unzugängliche Teilbereiche des Spinnprozesses

Die Simulation an sich ist einsatzbereit, die Forscher haben damit bereits verschiedene Spinnprozesse bei Kunden optimiert. Michael Rothmann, Head of Development beim Kunden BJS Ceramics, zeigt sich begeistert: „In unserer aktuellen Zusammenarbeit konnte erstmals der komplette Spinnprozess simuliert werden – wir konnten damit einen Einblick in bisher unzugängliche Teilbereiche des Prozesses erlangen. Diese Ergebnisse ermöglichen es uns, in Zukunft eine gezieltere Prozessoptimierung durchzuführen und damit unsere Entwicklungszyklen zu verkürzen.“ In einem weiteren Projekt wollen die Fraunhofer-Forscher das Simulationstool so weiterentwickeln, dass es als Software bei den produzierenden Firmen selbst laufen kann. In etwa drei Jahren – so der Plan – soll die Software lizensiert werden.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 45924958)