Bionik Käfern auf die Füße geschaut

Redakteur: Dipl.-Ing. Dorothee Quitter

Einem Forschungsteam der Christian-Albrechts-Universität zu Kiel (CAU) ist es gelungen, nach dem Vorbild von Käferfüßen die Haftwirkung eines Silikonmaterials deutlich zu erhöhen. Ihre Ergebnisse könnten unter anderem interessant sein für die Entwicklung winziger Roboter und Greifvorrichtungen.

Anbieter zum Thema

Unterschiedlich gekrümmt verändert sich die Haftwirkung des Silikonmaterials, dessen Oberfläche pilzkopfartig strukturiert wurde. Nach innen gebogen (konkav) ist die Haftwirkung am größten (rechts).
Unterschiedlich gekrümmt verändert sich die Haftwirkung des Silikonmaterials, dessen Oberfläche pilzkopfartig strukturiert wurde. Nach innen gebogen (konkav) ist die Haftwirkung am größten (rechts).
(Bild: Emre Kizilkan/CAU Kiel)

Wie sich die Hafteigenschaften von Silikonelastomeren nach dem Vorbild der Natur verbessern lassen, erforschen Professor Stanislav N. Gorb und Emre Kizilkan von der Arbeitsgruppe Funktionelle Morphologie und Biomechanik an der CAU. Als Vorbild dient ihnen dabei die pilzkopfartige Oberflächenstruktur bestimmter männlicher Blattkäfer (Chrysomelidae). In zwei aktuellen Studien fanden sie heraus, dass Silikonelastomere am besten haften, wenn ihre Oberfläche pilzkopfartig strukturiert und anschließend sehr gezielt mit Plasma behandelt wird. Um die Biologie zu imitieren, kombinieren die Kieler Wissenschaftler also eine geometrische und eine chemische Methode. Außerdem zeigten sie, dass die Adhäsionseigenschaft des mikrostrukturierten Silikonmaterials von seinem Krümmungsgrad beeinflusst wird.

Bildergalerie

Reversible Haftung im Mikrobereich ohne Klebstoffe

In einem ersten Schritt verglich das Forschungsteam Silikonelastomere mit drei unterschiedlichen Oberflächen, eine unstrukturierte, eine mit säulenförmigen Elementen und eine dritte mit einer pilzkopfartigen Struktur. Mithilfe eines Mikromanipulators hafteten sie eine Glaskugel an das Material und zogen sie wieder ab. Sie testeten, wie sich die Haftung ändert, wenn die mikrostruktierten Oberflächen konvex (nach außen gewölbt) und konkav (nach innen gewölbt) gebogen werden. „Wir konnten so zeigen, dass Silikonelastomere mit einer Pilzkopfstruktur im konkav gekrümmten Zustand eine zweimal größere Bandbreite an Haftstärken aufweisen“, erläutert Doktorand Emre Kizilkan. In einem zweiten Schritt behandelten die Wissenschaftler die Silikonelastomere mit Plasma. Um herauszufinden, wie Plasmabehandlungen die Adhäsion eines Materials ohne Schaden signifikant verbessern können, variierten die Wissenschaftler im Prozess verschiedene Parameter wie die Dauer oder den Druck. Sie stellten fest, dass sich durch eine Plasmabehandlung die Haftung von unstrukturierten Oberflächen auf einem Glasträger um etwa 30% erhöht. Auf der pilzkopfartig strukturierten Oberfläche verbessert sich die Haftung bei optimalen Parametern sogar bis zu 91%.

Anwendung bei Mikrorobotern und Klebebändern

„Auf sehr kleinem Raum haben wir eine starke Haftung, die wir sehr breit variieren können“, fasst Materialwissenschaftler Kizilkan die Ergebnisse zusammen. Das mache die Ergebnisse gerade für Anwendungen im kleinen Maßstab wie Mikroroboter interessant. Bereits entstanden ist aus den Erkenntnissen der Kieler Arbeitsgruppe ein extrem stark haftendes Klebeband, das nach dem „Gecko-Prinzip“ funktioniert und sich rückstandslos ablösen lässt. (qui)

Das könnte Sie auch interessieren:

SEMINARTIPP Das Seminar „Konstruktionsbionik“ der konstruktionspraxis-Akademie vermittelt einen Überblick zu den Möglichkeiten der Bionik bei der Entwicklung neuer Produkte. Die Teilnehmer gehen selbst auf bionische Lösungssuche und lernen die Prinzipien der bionischen Gestaltoptimierung kennen.
Info & Anmeldung: www.b2bseminare.de/konstruktion/konstruktionsbionik

(ID:45447912)