Faszination Technik Wie rotierende Bänder einen synthetischen Mini-Motor antreiben

Von TUM 2 min Lesedauer

Anbieter zum Thema

In unserer Rubrik „Faszination Technik“ stellen wir Konstrukteuren jede Woche beeindruckende Projekte aus Forschung und Entwicklung vor. Heute: Wie Forschende Bakterien zum Vorbild nehmen und einen synthetischen Mini-Motor mit enormer Kraft entwickeln.

Die Forschenden hoffen auf den Einsatz ihres Mini-Motors in Nanorobotern im Organismus.(Bild:  Patrick Helmholz - stock.adobe.com / KI-generiert)
Die Forschenden hoffen auf den Einsatz ihres Mini-Motors in Nanorobotern im Organismus.
(Bild: Patrick Helmholz - stock.adobe.com / KI-generiert)

Forschende der Technischen Universität München (TUM) haben einen künstlichen Motor auf supramolekularer Ebene entwickelt, der den Angaben zufolge eine beeindruckende Kraft entfalten kann. Der Aufziehmotor besteht aus einem winzigen Band aus speziellen Molekülen. Bei Energiezufuhr richtet sich dieses Band aus, bewegt sich wie eine kleine Flosse und kann dadurch Objekte anschieben. Die Energie dafür kommt erstmals von einem chemischen Treibstoff.

Chemischer Treibstoff treibt die Rotation an

Bisher war die Umwandlung von chemischer Energie in Rotationsenergie auf supramolekularer Ebene, also bei kleinen Objekten, die aus mehr als einem Molekül bestehen, nur aus der Biologie bekannt. Urbakterien, sogenannte Archaea, nutzen den chemischen Treibstoff ATP, um ihre winzigen flossenartigen Fortbewegungsorgane, die Flagellen, zu rotieren und sich so fortzubewegen. Synthetische Nachbildungen dieses Prozesses gab es bisher nicht. Die neue Entwicklung könnte in Zukunft etwa in Nanorobotern zum Einsatz kommen, die beispielsweise durch Blutbahnen schwimmen, um Tumorzellen aufzuspüren.

Die Forschenden hoffen auf den Einsatz ihres Mini-Motors in Nanorobotern im Organismus.(Bild:  Patrick Helmholz - stock.adobe.com / KI-generiert)
Die Forschenden hoffen auf den Einsatz ihres Mini-Motors in Nanorobotern im Organismus.
(Bild: Patrick Helmholz - stock.adobe.com / KI-generiert)

Die von einem Team um Brigitte und Christine Kriebisch sowie Job Boekhoven, Professor für Supramolekulare Chemie, entwickelten Bänder aus Peptiden sind Mikrometer lang und nur wenige Nanometer breit. Bei Zugabe von chemischem Treibstoff gewinnen sie an Struktur und rollen sich die Bänder zu kleinen Röhren zusammen, wodurch sie beginnen, sich wie ein Aufziehmotor zu drehen. Dieser Vorgang kann sogar live unter dem Mikroskop beobachtet werden.

Rotation ist steuerbar

Die Forschenden entdeckten, dass sie die Rotationsgeschwindigkeit der Bänder durch die Menge des zugeführten Treibstoffs steuern können. Zudem lässt sich die Rotationsrichtung – im oder gegen den Uhrzeigersinn – durch die Struktur der Molekülbausteine der Bänder beeinflussen. Die Forschungsergebnisse wurden im renommierten Fachmagazin Chem veröffentlicht.

Mikro-Wanderer kriechen auf Oberflächen

Gemeinsam mit Prof. Matthias Rief, TUM-Professor für Molekulare Biophysik, der an modernen optischen Messmethoden arbeitet, stellten die Forschenden fest, dass die Bänder genug Kraft auf ihre Umgebung ausüben, um mikrometergroße Objekte zu bewegen. Die Bestimmung der Kraft ist eines der wichtigsten Ergebnisse für eine praktische Nutzung.

Werden mehrere rotierende Bänder zum Beispiel an einem zentralen Punkt zusammengeführt, entstehen kleine "Mikro-Wanderer", die auf Oberflächen vorankriechen können. In Zukunft könnten diese Mikro-Wanderer, nach weiteren Verbesserungen, möglicherweise für medizinische Anwendungen wie den Transport von Medikamenten im Körper eingesetzt werden. Noch ist der verwendete Treibstoff dafür nicht geeignet, da er für den Organismus schädlich wäre.

(ID:50171155)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung