Die Technologie des 3D-Drucks gilt im Vergleich zu den etablierten Fertigungsverfahren als eine noch recht junge Technologie. Das mit Hilfe des 3D-Drucks Produkte mit bisher nicht möglichen, komplexen Stoffzusammensetzungen und damit auch völlig neuartigen Eigenschaften hergestellt werden können, beweist das neu gegründete Fachgebiet „Werkstoffe für die Additive Fertigung“ der TU Berlin. Und so könnte die vierte Dimension im 3D-Druck aussehen:
Neben der Möglichkeit, beim Laserauftragschweißen verschiedene Materialien zu kombinieren, seien auch die Energie, der Strahldurchmesser und die Bewegungsgeschwindigkeit des Lasers Parameter, mit denen Materialeigenschaften beeinflusst werden können.
(Bild: EOS)
Glühend heißer Stahl fließt in eine Barrenform und wird nach dem Erstarren, immer noch glühend, zu Blechen oder Stäben gewalzt. Diese können anschließend zu unterschiedlichen Formen tiefgezogen, gebogen oder geschmiedet werden. „Bei jeder dieser Umformungen verändert sich auch die Werkstoffstruktur, wobei aber die wichtigsten Materialeigenschaften bereits beim Guss des Werkstoffrohlings festgelegt werden“, sagt Prof. Dr.-Ing. Christian Haase, er leitet das neue Fachgebiet „Werkstoffe für die Additive Fertigung“ an der TU Berlin. Im Gegensatz zu diesem Top-down-Ansatz nutze man bei der additiven Fertigung eine Bottom-up-Methode: Beim 3D-Druck wird das fertige Produkt – bis auf nachträgliche Arbeiten wie zum Beispiel Polituren – in einem Arbeitsschritt hergestellt. Im sogenannten Pulverbettverfahren schmilzt dazu ein Laser- oder Elektronenstrahl ein pulverförmig vorliegendes Material selektiv an bestimmten Stellen auf, sodass schließlich Schicht für Schicht ein komplexes Werkstück mit fast beliebigen Formen entstehen kann. Beim „Laserauftragschweißen“ können sogar ganz unterschiedliche Materialien zusammen ein Werkstück aufbauen, wobei das jeweils gewünschte Material erst kurz vor dem Aufschmelzen durch den Laser etwa als Pulver-Gas-Gemisch aufgesprüht wird. Auch wenn der 3D-Druck im Vergleich zu den etablierten Fertigungsverfahren eine noch recht junge Technologie ist, können mit Hilfe des 3D-Drucks Produkte mit bisher nicht möglichen, komplexen Stoffzusammensetzungen und damit auch völlig neuartigen Eigenschaften hergestellt werden. Hier setzt das neu gegründete Fachgebiet „Werkstoffe für die Additive Fertigung“ von Prof. Dr.-Ing. Christian Haase an. Sein Lehrstuhl ist die zweite TU-Professur in Kooperation mit dem Industrie- und Wissenschaftscampus Werner-von-Siemens Centre for Industry and Science e.V. (WvSC).
Buchtipp
Das Buch "Additive Fertigung" beschreibt Grundlagen und praxisorientierte Methoden für den Einsatz der additiven Fertigung in der Industrie und unterstützt Konstrukteure und Entwickler dabei, additive Verfahren erfolgreich in ihren Unternehmen zu implementieren.
„Durch diese Produktionsweise lassen sich direkt bei der Formgebung an unterschiedlichen Stellen des Werkstücks ganz unterschiedliche Material- und Oberflächeneigenschaften einstellen, und zwar auf völlig verschiedenen Größenskalen“, sagt Christian Haase. Neben der Möglichkeit, beim Laserauftragschweißen verschiedene Materialien zu kombinieren, seien auch die Energie, der Strahldurchmesser und die Bewegungsgeschwindigkeit des Lasers Parameter, mit denen Materialeigenschaften beeinflusst werden können. „Von der unterschiedlichen chemischen Zusammensetzung und der Anordnung einzelner Atoms, über großräumigere, erwünschte Abweichungen in der Kristallstruktur bis hin zur Kornstruktur des Materials, die manchmal schon mit bloßem Auge sichtbar ist – in all diesen Größenbereichen können wir gezielt Veränderungen vornehmen.“
Vielzahl an möglichen Kombinationen für das Optimum
Diese Möglichkeit, neben der praktisch frei wählbaren dreidimensionalen Form in der additiven Fertigung auch völlig neue Materialeigenschaften in die Mikrostruktur der Werkstoffe zu integrieren, wird in der Fachwelt auch als vierte Dimension im 3D-Druck bezeichnet. In den kommenden fünf Jahren wird Christian Haase mit dem ERC Starting Grant „HeteroGenius4D“ diese zusätzliche Dimension untersuchen. „Die Schwierigkeit ist hier, dass die Anzahl der Parameter, die man verändern kann, sehr hoch ist. Schon allein der Raum der chemischen Zusammensetzungen, mit denen man arbeiten kann, ist extrem breit, selbst wenn man sich auf metallische Werkstoffe beschränkt“, erklärt Haase. Dazu kämen die Prozessparameter wie die Eigenschaften und die Führung des Laserstrahls. „Es gibt also eine Vielzahl an möglichen Kombinationen, aus denen man das Optimum herausfiltern muss.“
Kombination aus Hochdurchsatz-Experimenten und Werkstoff-Simulationen
Um diese Herausforderung zu lösen, setzt Christian Haase auf Computersimulationen von neuen Werkstoffen, die deren Eigenschaften vorhersagen. „Das funktioniert aber nur, wenn diese Simulationen auf einer soliden Datenbasis aufbauen können“, sagt Haase. Daher führen er und sein Team auch sogenannte Hochdurchsatz-Experimente durch, bei denen Probekörper mit Hilfe des Laserauftragschweißens in Hochgeschwindigkeit erstellt werden und automatisiert Messungen der Härte dieser Probekörper und elektronenmikroskopische Aufnahmen von ihnen durchgeführt werden. „Am Schluss haben wir ganze Landkarten, die zeigen, wie die Werkstoffeigenschaften von der chemischen Zusammensetzung und etwa der Laserleistung abhängen. Auf diesen Landkarten können dann Simulationsprogramme eine verfeinerte Suche nach den für einen Anwendungszweck genau gewünschten Materialeigenschaften durchführen.“
Additive Fertigung mit hilfreicher Rolle bei Energiewende
3D-Druck wird in der Industrie traditionell dort angewandt, wo komplexe Werkstücke in kleiner Stückzahl benötigt werden. Etwa für Gussformen und Spezialwerkzeuge in Produktionsanlagen, in der Halbleiterindustrie, aber auch in der Luft- und Raumfahrt. „Auch bei der Energiewende wird die additive Fertigung eine hilfreiche Rolle spielen“, sagt Christian Haase und nennt als Beispiel ein Forschungsprojekt, das er im Bereich Mobilität durchgeführt hat. Dabei ging es um hochfeste Aluminiumlegierungen, bei denen das teure und geopolitisch kritische Element Scandium ersetzt werden sollte. Mit Hilfe seines Ansatzes aus Experiment und Simulation konnte die Gruppe von Haase das preiswertere Element Zirkon als Ersatz ausmachen, das in der Legierung besser Eigenschaften zeigte und zudem Gewicht einsparte. „Auch in den heißen Bereichen von Gasturbinen, sei es im Flugzeug oder aber bei der Umwandlung von Erdgas oder Wasserstoff in elektrischen Strom, kann der 3D-Druck große Vorteile bringen, etwa weil durch neue Geometrien ganz andere, in die Turbine integrierte Kühlsysteme möglich werden“, so Haase, der in diesem Bereich ebenfalls bereits einschlägige Projekterfahrung vorweisen kann.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.