Additive Fertigung 3D-Drucker der Natur: Edition Borstenwurm

Quelle: Pressemitteilung 3 min Lesedauer

Anbieter zum Thema

Der Meeresringelwurm Platynereis dumerilii kann seine Borsten Stück für Stück bilden – wie ein 3D-Drucker. Das hat eine interdisziplinäre Studie der Gruppe um den Molekularbiologen Florian Raible von den Max Perutz Labs an der Universität Wien herausgefunden.

Larve des Meeresringelwurms Platynereis dumerilii, Rasterelektronenmikroskopische Aufnahme (Größenmaßstab: 100µm)(Bild:  Technische Universität Wien)
Larve des Meeresringelwurms Platynereis dumerilii, Rasterelektronenmikroskopische Aufnahme (Größenmaßstab: 100µm)
(Bild: Technische Universität Wien)

Chitin ist das primäre Baumaterial sowohl für das Außenskelett der Insekten, als auch für die Borsten von Borstenwürmern wie dem Meeresringelwurm Platynereis dumerilii. Die Borstenwürmer besitzen allerdings ein etwas weicheres Chitin – das sogenannte Beta-Chitin – das für biomedizinische Anwendungen besonders interessant ist. Durch die Borsten können die Würmer sich im Wasser fortbewegen. Wie sich das Chitin zu den Borsten formt, stellte Forscher bisher aber noch vor Rätsel. Die neue Studie gibt nun spannenden Einblick in diese besondere Biogenese.

Bei diesem Entstehungsprozess werden also Stück für Stück die wichtigen Funktionseinheiten hintereinander erzeugt, das ähnelt einem 3D-Druck.

Florian Raible

Florian Raible, Molekularbiologe von den Max Perutz Labs an der Universität Wien, erklärt: „Der Prozess beginnt bei der Borstenspitze, gefolgt vom Mittelteil und schließlich der Basis der Borsten. Dabei werden die fertigen Teile immer weiter aus dem Körper herausgeschoben. Bei diesem Entstehungsprozess werden also Stück für Stück die wichtigen Funktionseinheiten hintereinander erzeugt, das ähnelt einem 3D-Druck.“ Das Projekt ist eine Zusammenarbeit mit Forschern der Universität Helsinki, der Technischen Universität Wien und der Masaryk-Universität Brünn. Die Studie wurde aktuell im renommierten Fachmagazin Nature Communications veröffentlicht.

Ringelwurmzellen für medizinische Produkte

Ein genaueres Verständnis für Prozesse wie diesen birgt auch Potenzial für die Entwicklung medizinischer Produkte der Zukunft oder für die Herstellung natürlich abbaubarer Materialen. Beta-Chitin aus der Rückenschale von Tintenfischen dient zum Beispiel momentan als Rohstoff für die Herstellung besonders verträglicher Wundverbände. „Vielleicht lassen sich in der Zukunft auch Ringelwurmzellen für die Herstellung dieses Materials nutzen“, so Raible.

Bildergalerie

Der genaue biologische Hintergrund dazu: Sogenannte Chaetoblasten spielen bei diesem Prozess eine zentrale Rolle. Chaetoblasten sind spezialisierte Zellen mit langen Oberflächenstrukturen, den sogenannten Mikrovilli. Diese Mikrovilli wiederum beherbergen ein spezifisches Enzym, das für die Entstehung von Chitin verantwortlich ist, Chitin wiederum ist eben das Material aus dem schließlich die Borsten sind. Die Ergebnisse der Forscher zeigen eine dynamische Zelloberfläche, die durch geometrisch angeordnete Mikrovilli gekennzeichnet ist.

Borsten entstehen innerhalb von zwei Tagen

Die einzelnen Mikrovilli haben dabei eine ähnliche Funktion wie die Spritzdüsen eines 3D-Druckers. Florian Raible führt aus: „Unsere Analyse legt nahe, dass das Chitin von den einzelnen Mikrovilli der Chaetoblasten-Zelle ausgestoßen wird. Die präzise Änderung der Zahl und Form dieser Mikrovilli über die Zeit ist damit der Schlüssel für die Ausformung der geometrischen Strukturen der einzelnen Borste, wie etwa einzelner Zähnchen auf der Borstenspitze, die in ihrer Präzision bis unter den Mikrometer-Bereich reichen.“ Die Borsten entstehen in der Regel innerhalb von nur zwei Tagen und können unterschiedliche Formen haben, je nach Entwicklungsstadium des Wurms sind sie kürzer oder länger, spitzer oder flacher.

Buchtipp

Das Buch "Additive Fertigung" beschreibt Grundlagen und praxisorientierte Methoden für den Einsatz der additiven Fertigung in der Industrie und unterstützt Konstrukteure und Entwickler dabei, additive Verfahren erfolgreich in ihren Unternehmen zu implementieren.

Mehr erfahren bei Vogel Fachbuch

Neben der lokalen Zusammenarbeit mit der Technischen Universität Wien und Bildgebungsspezialist der Universität Brünn erwies sich die Kooperation mit dem Jokitalo-Labor der Universität Helsinki als großer Gewinn für die Forscher der Universität Wien. Mit ihrer Expertise in der seriellen Block-Face-Rasterelektronenmikroskopie (SBF-SEM) untersuchten die Forscher die Anordnung der Mikrovilli im Prozess der Borstenentstehung und schlugen auf Grundlage dessen ein 3D-Modell für die Synthese der Borstenentstehung vor. Erstautor Kyojiro Ikeda von der Universität Wien erklärt: „Die Standard-Elektronentomographie ist sehr arbeitsintensiv, da das Schneiden der Proben und ihre Untersuchung im Elektronenmikroskop händisch gemacht werden muss. Mit diesem Ansatz können wir die Analyse von Tausenden von Schichten jedoch zuverlässig automatisieren.“

(ID:50038190)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung