Materialien KI-Training in der Materialforschung

Quelle: Pressemitteilung 3 min Lesedauer

Anbieter zum Thema

Künstliche Intelligenz (KI) beschleunigt die Entwicklung neuer Materialien. Eine Voraussetzung für KI in der Materialforschung sind die umfassende Nutzung und der Austausch von Daten über Materialien. Das erleichtert der umfassende internationale Standard Optimade.

Silvana Botti war am internationalen Konsortium beteiligt, das eine erweiterte Version des OPTIMADE-Standards vorgestellt hat.(Bild:  RUB, Marquard)
Silvana Botti war am internationalen Konsortium beteiligt, das eine erweiterte Version des OPTIMADE-Standards vorgestellt hat.
(Bild: RUB, Marquard)

Neue Technologien in Bereichen wie Energie und Nachhaltigkeit, etwa Batterien, Solarzellen, LED-Beleuchtung und biologisch abbaubare Materialien, erfordern neue Werkstoffe. Forschende auf der ganzen Welt arbeiten daran. „Es ist jedoch eine große Herausforderung, Materialien zu schaffen, die genau die geforderten Eigenschaften aufweisen, zum Beispiel keine umweltgefährdenden Stoffe enthalten und gleichzeitig lange haltbar sind“, erklärt Miguel Marques.

KI-Methoden aus anderen Bereichen für Materialforschung

„Wir erleben derzeit eine explosionsartige Entwicklung, bei der Forschende in der Materialwissenschaft KI-Methoden aus anderen Bereichen übernehmen und auch ihre eigenen Modelle für die Materialforschung entwickeln. Der Einsatz von KI zur Vorhersage von Eigenschaften verschiedener Materialien eröffnet völlig neue Möglichkeiten“, sagt Prof. Dr. Rickard Armiento, außerordentlicher Professor am Fachbereich für Physik, Chemie und Biologie (IFM) der Universität Linköping in Schweden.

Auf Supercomputern werden anspruchsvolle Simulationen durchgeführt, die beschreiben, wie sich Elektronen in Materialien bewegen, was zu unterschiedlichen Materialeigenschaften führt. Diese Berechnungen liefern große Datenmengen, die zum Trainieren von Modellen für maschinelles Lernen verwendet werden können. Die KI-Modelle können dann sofort die Reaktionen auf neue, bisher noch nicht durchgeführte Berechnungen vorhersagen und damit auch die Eigenschaften neuer Materialien. Zum Trainieren der Modelle sind jedoch riesige Datenmengen erforderlich.

Konstruktionsleiterforum

Produktentwicklung neu denken

Der Schlüssel für den Erfolg eines Unternehmens liegt in Konstruktion und Entwicklung. Hier entstehen innovative Produkte, die die Wettbewerbsfähigkeit sichern. Doch kennen Sie die Herausforderungen der Produktentwicklung im 21. Jahrhundert?

Das Konstruktionsleiterforum will Konstruktions- und Entwicklungsleiter für Hürden sensibilisieren, sowie Tools und Methoden aufzeigen, um innovative Ideen strukturiert zu entwickeln und den Produktentstehungsprozess so schlank und effizient wie möglich zu gestalten.

Datenbanken wie Inseln im Meer

„Wir bewegen uns auf eine Ära zu, in der wir Modelle auf allen Daten trainieren wollen, die es gibt“, sagt Rickard Armiento. Daten aus groß angelegten Simulationen und allgemeine Informationen über Materialien werden in großen Datenbanken gesammelt. Im Laufe der Zeit haben sich viele solcher Datenbanken aus verschiedenen Forschungsgruppen und Projekten herausgebildet, wie isolierte Inseln im Meer. Sie funktionieren unterschiedlich und definieren Eigenschaften auf verschiedene Weise.

„Forschende an Universitäten oder in der Industrie, die Materialien in großem Maßstab abbilden oder ein KI-Modell trainieren wollen, müssen Informationen aus diesen Datenbanken abrufen. Daher ist ein Standard erforderlich, damit die Nutzenden mit all diesen Datenbibliotheken kommunizieren und die erhaltenen Informationen verstehen können“, sagt Prof. Dr. Gian-Marco Rignanese, Professor am Institut für kondensierte Materie und Nanowissenschaften der UCLouvain in Belgien.

Prof. Dr. Miguel Marques, Inhaber des Lehrstuhls „Künstliche Intelligenz für integrierte Materialwissenschaft“ setzt sich für den Standard OPTIMADE ein, der den Nutzenden einen leichteren Zugang sowohl zu führenden als auch zu weniger bekannten Werkstoffdatenbanken zu ermöglichen will.(Bild:  RUB, Marquard)
Prof. Dr. Miguel Marques, Inhaber des Lehrstuhls „Künstliche Intelligenz für integrierte Materialwissenschaft“ setzt sich für den Standard OPTIMADE ein, der den Nutzenden einen leichteren Zugang sowohl zu führenden als auch zu weniger bekannten Werkstoffdatenbanken zu ermöglichen will.
(Bild: RUB, Marquard)

Leichteren Zugang zu Werkstoffdatenbanken ermöglichen

Der Standard OPTIMADE (Open databases integration for materials design) wurde in den vergangenen acht Jahren entwickelt. Dahinter steht ein großes internationales Netzwerk mit über 30 Institutionen weltweit und großen Werkstoffdatenbanken in Europa und den USA. Ziel ist es, den Nutzenden einen leichteren Zugang sowohl zu führenden als auch zu weniger bekannten Werkstoffdatenbanken zu ermöglichen. Eine der größten Änderungen in der neuen Version ist die stark verbesserte Möglichkeit, verschiedene Materialeigenschaften und andere Daten mithilfe gemeinsamer, fundierter Definitionen genau zu beschreiben. Ein großes internationales Konsortium hat jetzt eine erweiterte Version des OPTIMADE-Standards vorgestellt. Beteiligt an der Entwicklung waren Prof. Dr. Miguel Marques, Inhaber des Lehrstuhls „Künstliche Intelligenz für integrierte Materialwissenschaft“, und Prof. Dr. Silvana Botti, Inhaberin des Lehrstuhls „Theorie der angeregten Zustände integrierter Festkörpersysteme“ der Ruhr-Universität Bochum, Mitglieder im interdisziplinären Research Center Future Energy Materials and Systems (RC FEMS).

(ID:50080171)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung