Konfiguration Forschende bringen generative KI in den Anlagenbau

Quelle: Bergische Universität Wuppertal 3 min Lesedauer

Anbieter zum Thema

Im Projekt „GenISys“ entwickeln Forschende der Bergischen Universität Wuppertal gemeinsam mit zwei Praxispartnern generative KI-Modelle, um den Bau von Abfüllanlagen zukünftig intelligenter und ressourcenschonender zu gestalten. Übergeordnetes Ziel ist es, den Einsatz künstlicher Intelligenz in relevanten Wirtschaftsbranchen voranzutreiben.

Der Entwurf und Bau von industriellen Abfüllanlagen ist aufwendig. Mithilfe generativer KI soll die Konfiguration zukünftig ressourcenschonender und intelligenter gelingen.(Bild:  romaset - stock.adobe.com)
Der Entwurf und Bau von industriellen Abfüllanlagen ist aufwendig. Mithilfe generativer KI soll die Konfiguration zukünftig ressourcenschonender und intelligenter gelingen.
(Bild: romaset - stock.adobe.com)

Generative KI-Modelle sind darauf ausgerichtet, aus bestehenden Daten neue Inhalte zu generieren. In vielen Unternehmens- und Benutzeranwendungen sind die Modelle bereits integriert und beweisen beeindruckende Fähigkeiten, beispielsweise bei der Generierung menschenähnlicher Texte. „Im industriellen Produktionsbereich bleibt das bekannte Potenzial und die Leistungsfähigkeit generativer KI-Ansätze dagegen noch nahezu ungenutzt. Mitunter, da KI-Methoden an Einsatzbereiche mit sehr speziellen Anforderungen noch nicht angepasst sind“, erklärt Dr. Hasan Tercan, wissenschaftlicher Leiter des Forschungsbereichs „Industrial Deep Learning“ am Lehrstuhl für Technologien und Management der Digitalen Transformation der Bergischen Universität.

Komplex, kostenintensiv, langwierig

Ein solch besonderer Einsatzbereich ist der Entwurf und Bau von industriellen Abfüllanlagen, beispielsweise für pulverförmiges und körniges Material wie Zement, das in der Massenproduktion in Säcke abgefüllt werden muss. Der aufwendige, teils manuelle Konfigurationsprozess dieser Anlagen ist geprägt von Labortests zur Bestimmung der Eigenschaften des abzufüllenden Materials sowie der Entwicklung und mehrstufigen Erprobung eines Anlagenprototyps. Bei neuen Betriebsanforderungen und sich ändernden Materialeigenschaften folgen weitere notwendige Anpassungsschritte im Betrieb der Anlage. „Dieser arbeitsintensive Charakter des Designprozesses in Verbindung mit der wiederkehrenden Notwendigkeit, Parameter aufgrund von Materialänderungen neu zu definieren, unterstreicht den Bedarf eines innovativeren und anpassungsfähigeren Ansatzes für die Konfiguration von Anlagen“, so Tercan.

Testzyklen reduzieren

Der Wissenschaftler und sein Team arbeiten im nun gestarteten Forschungsprojekt „GenISys“ gemeinsam mit dem Softwareunternehmen Snap und dem Anlagenbauer Haver & Boecker daran, die Zahl der Testzyklen mithilfe digitaler Technologien und des Einsatzes von generativen KI-Verfahren zu reduzieren. Damit wollen sie nicht nur die Umsetzung innovativer Ideen und Dienstleistungen in der Branche vorantreiben – ein geringerer Produktionsaufwand und weniger Materialeinsatz schonen auch die Umwelt.

Die Bedeutung der Innovation, so die Projektpartner, gehe weit über die unmittelbare Anwendung im Maschinen- und Anlagenbau hinaus. Da der KI-Entwicklungs- und Trainingsprozess sorgfältig auf Anpassbarkeit und Erweiterbarkeit ausgelegt sei, könne das Anwendungsgerüst später – zum Beispiel in Form eines Lizenzmodells für einen KI-Modul-Baukasten – nahtlos in unterschiedlichen Kontexten wiederverwendet werden, was die Integration in andere Branchen ermöglicht.

Konstruktionsleiter Forum

Produktentwicklung neu denken

Der Schlüssel für den Erfolg eines Unternehmens liegt in Konstruktion und Entwicklung. Hier entstehen innovative Produkte, die die Wettbewerbsfähigkeit sichern. Doch kennen Sie die Herausforderungen der Produktentwicklung im 21. Jahrhundert?

Das Konstruktionsleiter Forum will Konstruktions- und Entwicklungsleiter für Hürden sensibilisieren, sowie Tools und Methoden aufzeigen, um innovative Ideen strukturiert zu entwickeln und den Produktentstehungsprozess so schlank und effizient wie möglich zu gestalten.

Für mehr Details: Vorgehensweise im Projekt

Ziel: Entwicklung einer KI-basierten, leicht bedienbaren und interaktiven Softwareanwendung

Die Vision des Projekts ist die Entwicklung einer KI-basierten, leicht bedienbaren und interaktiven Softwareanwendung für Anlagenbauunternehmen und die Anlagenbetreibenden. Ausgangspunkt für „GenISys“ sind Daten und Informationen über einen Kundenauftrag, auf deren Basis die zu entwickelnde Software eine neue Abfüllanlage konfigurieren soll. Bei den Daten handelt es sich zum einen um Materialeigenschaften des abzufüllenden Produktes – zum Beispiel Korngröße und Dichte –, die durch Laboruntersuchungen ermittelt wurden, und zum anderen um vorhandene mikroskopische Bildaufnahmen des Produktes, die bislang hauptsächlich zu Dokumentations- und Verifikationszwecken angefertigt wurden. Zum Training der in der Software integrierten KI-Modelle stehen zudem historische Daten von tausenden Anlagenkonfigurationen und Produkteigenschaften zur Verfügung.

Um die Software anwendungstauglich zu realisieren, müssen Architektur der KI-Modelle, Trainingsmethoden, Modularisierungsstrategien zur Integration in bestehende Geschäftsprozesse und Automatisierungsstrategien für deren fortlaufende Optimierung sowie Konzepte zur Einbindung menschlichen Feedbacks angepasst und teilweise neu entwickelt werden.

Gefördert wird das Vorhaben „GenISys – Intelligentes System zur ressourcenschonenden Anlagenkonfiguration mit generativer KI-Technologie“ im Rahmen des Innovationswettbewerbs NEXT.IN.NRW vom Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen und der Europäischen Union mit Mitteln aus dem Europäischen Fonds für Regionale Entwicklung (EFRE-Programm NRW 2021-2027).

(ID:50096628)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung