Faszination Technik Metallorganische Gerüstverbindungen leitet Strom wie Metalle

Quelle: KIT 3 min Lesedauer

Anbieter zum Thema

In unserer Rubrik „Faszination Technik“ stellen wir Konstrukteuren jede Woche beeindruckende Projekte aus Forschung und Entwicklung vor. Heute: eine MOF-Dünnschicht, die Strom leitet wie Metalle.

Metallische Leitfähigkeit bei MOF-Dünnschichten eröffnen neue Perspektiven in der Elektronik- und Energieforschung. (Bild:  Lena Pilz, KIT)
Metallische Leitfähigkeit bei MOF-Dünnschichten eröffnen neue Perspektiven in der Elektronik- und Energieforschung.
(Bild: Lena Pilz, KIT)

Metallorganische Gerüstverbindungen (MOFs) zeichnen sich durch hohe Porosität und eine anpassbare Struktur aus. Sie besitzen enormes Potenzial, zum Beispiel für Anwendungen in der Elektronik. Doch bisher schränkte ihre geringe elektrische Leitfähigkeit ihren Einsatz stark ein. Mithilfe von KI- und robotergestützter Synthese in einem selbststeuernden Labor ist es Forschenden des Karlsruher Instituts für Technologie (KIT) gemeinsam mit Kolleginnen und Kollegen in Deutschland und Brasilien nun gelungen, eine MOF-Dünnschicht anzufertigen, die Strom leitet wie Metalle. Damit eröffnen sich in der Elektronik und der Energiespeicherung – von Sensorik über Quantenmaterialien bis hin zu Funktionswerkstoffen – neue Möglichkeiten. Das Team berichtet in der Fachzeitschrift Materials Horizons.

Die Ursache für die geringe elektrische Leitfähigkeit sind Defekte wie etwa Grenzflächen zwischen Kristalldomänen. Solche Strukturfehler behindern den Elektronentransport. Mit unserem neuen Herstellungsverfahren haben wir die Dichte dieser Defekte deutlich reduziert.

Professor Christof Wöll

Neues Herstellungsverfahren minimiert Defekte in MOFs

Metallische Leitfähigkeit in MOFs wurde bereits theoretisch vorhergesagt, in der Praxis jedoch bisher nur in Ausnahmefällen verwirklicht – und noch nie in der für technische Anwendungen entscheidenden Dünnschichtform. Bei dieser werden dünne Schichten des MOF auf einem Träger aufgebracht. „Die Ursache für die geringe elektrische Leitfähigkeit sind Defekte wie etwa Grenzflächen zwischen Kristalldomänen“, erklärt Professor Christof Wöll, Leiter vom IFG des KIT. „Solche Strukturfehler behindern den Elektronentransport. Mit unserem neuen Herstellungsverfahren haben wir die Dichte dieser Defekte deutlich reduziert.“

Bildergalerie

Das internationale Forschungsteam setzte KI- und robotergestützte Synthese in einem selbststeuernden Labor ein, um Dünnschichten des MOF-Materials Cu3(HHTP)2 zu optimieren. Dieser Ansatz ermöglicht eine präzise Kontrolle der Kristallinität und der Domänengröße. So gelang es, in Cu3(HHTP)2-Dünnschichten bei Raumtemperatur Leitfähigkeiten von über 200 Siemens pro Meter zu erreichen – bei tiefen Temperaturen von minus 173,15 Grad Celsius sogar noch höhere. Dies ist ein klares Merkmal metallischen Verhaltens, das den Weg zum Einsatz von MOF-Dünnschichten in elektronischen Bauteilen ebnet.

Die Kombination von automatisierter Synthese, vorausschauender Materialcharakterisierung und theoretischer Modellierung eröffnet neue Perspektiven für den Einsatz von MOFs in der Elektronik der Zukunft – von Sensorik über Quantenmaterialien bis hin zu maßgeschneiderten Funktionsmaterialien mit gezielt einstellbaren elektronischen Eigenschaften.

Professor Christof Wöll

Ungewöhnliche Transportphänomene mit optimierten MOF untersuchen

Theoretische Untersuchungen zeigen außerdem, dass das MOF-Material Cu3(HHTP)2 Dirac-Kegel aufweist – spezielle elektronische Zustände, wie sie beispielsweise auch bei Graphen zu finden sind. „Damit eröffnen sich völlig neue Möglichkeiten, um ungewöhnliche Transportphänomene wie Spin-Flüssigkeiten, in denen auch bei tiefen Temperaturen die Quantenspins ungeordnet bleiben, oder das sogenannte Klein-Tunneln, das heißt die Durchtunnelung von Barrieren durch sehr schnelle Teilchen, experimentell zu untersuchen“, sagt Wöll.

Mit ihrer Studie stellen die Forschenden somit nicht nur ein neuartiges Verfahren zur Herstellung leitfähiger MOF-Filme für den Einbau in elektronische Bauteile vor. Sie erschließen MOFs zugleich für viele neue Anwendungsfelder. „Die Kombination von automatisierter Synthese, vorausschauender Materialcharakterisierung und theoretischer Modellierung eröffnet neue Perspektiven für den Einsatz von MOFs in der Elektronik der Zukunft – von Sensorik über Quantenmaterialien bis hin zu maßgeschneiderten Funktionsmaterialien mit gezielt einstellbaren elektronischen Eigenschaften“, so Wöll.

(ID:50466334)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung