Additive Fertigung Wenn der Muskel aus dem Drucker kommt

Quelle: Empa 4 min Lesedauer

Anbieter zum Thema

Empa-Forschende haben eine Methode entwickelt, die weichen, elastischen, aber auch kraftvollen Strukturen von künstlichen Muskeln additiv herzustellen. Eines Tages könnten sie in der Medizin oder der Robotik zum Einsatz kommen – und auch überall sonst, wo sich Dinge auf Knopfdruck bewegen sollen.

Komplexität im kleinen Rahmen: Ein 3D-gedruckter weicher Aktor oder „künstlicher Muskel“.(Bild:  Empa)
Komplexität im kleinen Rahmen: Ein 3D-gedruckter weicher Aktor oder „künstlicher Muskel“.
(Bild: Empa)

Künstliche Muskulatur zu entwickeln, die der echten in nichts nachsteht, ist bisher mit einer großen technischen Herausforderung verbunden. Denn, um mit ihren biologischen Vorbildern mithalten zu können, müssen künstliche Muskeln nicht nur stark, sondern auch elastisch und weich sein. Im Grunde genommen sind künstliche Muskeln sogenannte Aktoren: Bauteile, die elektrische Impulse in Bewegung umwandeln. Aktoren kommen überall zum Einsatz, wo sich auf Knopfdruck etwas bewegt, ob zuhause, im Automotor oder in hochentwickelten Industrieanlagen. Mit Muskeln haben diese harten mechanischen Komponenten aber noch nicht viel gemein.

Buchtipp

Das Buch "Additive Fertigung" beschreibt Grundlagen und praxisorientierte Methoden für den Einsatz der additiven Fertigung in der Industrie und unterstützt Konstrukteure und Entwickler dabei, additive Verfahren erfolgreich in ihren Unternehmen zu implementieren.

Mehr erfahren bei Vogel Fachbuch

Ein Team von Forschenden aus dem Empa-Labor für Funktionspolymere arbeitet deshalb an Aktoren aus weichen Materialien. Nun haben sie erstmals eine Methode entwickelt, solche komplexen Komponenten mit dem 3D-Drucker herzustellen. Die sogenannten dielektrischen elastischen Aktoren (DEA) bestehen aus zwei unterschiedlichen silikonbasierten Materialien: einem leitenden Elektrodenmaterial und einem nichtleitenden Dielektrikum. Diese Materialien greifen schichtförmig ineinander. „In etwa so, als würde man die Finger verschränken“, erklärt Empa-Forscher Patrick Danner. Legt man an den Elektroden eine elektrische Spannung an, zieht sich der Aktor wie ein Muskel zusammen. Schaltet man die Spannung wieder ab, entspannt er sich in seine Ursprungsposition.

SEMINAR-TIPP

Smart Materials – Eigenschaften und Einsatzpotenziale für die Mechatronik

Wie lassen sich Smart Materials für mechatronische Anwendungen nutzen? Auf was muss ich bei der Auswahl achten? Und welche Potenziale und Grenze gibt es? Antworten auf diese Fragen liefert Ihnen das zweitägige Online-Seminar "Smart Materials". Erhalten Sie einen grundlegenden Einblick in die verschiedenen Klassen adaptiver Materialien und erfahren Sie mehr über die besonderen Materialeigenschaften sowie die vielfältigen Möglichkeiten zur Realisierung neuer Produkte.

Die Weiterbildungsveranstaltung setzt sich aus zwei Seminartagen zusammen, die einzeln, aber auch in Kombination zum Vorteilspreis gebucht werden können. Buchen Sie beide Seminartage im Paket und sparen Sie 15 %. Bei der Buchung des Kombitickets für beide Seminartage erhalten Sie zusätzlich das Fachbuch „Smart Materials“ als Nachschlagewerk.

Weitere Details und Termine

Eine solche Struktur additiv herzustellen, ist nicht trivial, weiß Danner. Die beiden weichen Materialien sollten sich – trotz ihrer sehr unterschiedlichen elektrischen Eigenschaften – beim Druckprozess sehr ähnlich verhalten. Sie dürfen sich nicht vermischen, müssen aber im fertigen Aktor trotzdem gut zusammenhalten. Die gedruckten „Muskeln“ müssen möglichst weich sein, damit ein elektrischer Stimulus zu der benötigten Verformung führen kann. Dazu kommen die Ansprüche, die alle 3D-druckbaren Materialien zu erfüllen haben: Unter Druck müssen sie sich verflüssigen, damit sie aus der Druckerdüse gepresst werden können. Unmittelbar danach müssen sie aber wieder zähflüssig genug sein, um die gedruckte Form zu behalten. „Diese Eigenschaften stehen oft in direktem Widerspruch zueinander“, sagt Danner. „Wenn man eine davon optimiert, verändern sich drei andere, meistens zum Nachteil.“

Bildergalerie

Widersprüchliche Eigenschaften unter einen Hut bringen

In Zusammenarbeit mit Forschenden der ETH Zürich ist es Danner und Dorina Opris, Leiterin der Forschungsgruppe „Functional Polymeric Materials“, gelungen, viele dieser widersprüchlichen Eigenschaften unter einen Hut zu bringen. Zwei Spezialtinten, entwickelt an der Empa, werden über eine von den ETH-Forschenden Tazio Pleij und Jan Vermant entwickelte Düse zu funktionierenden weichen Aktoren gedruckt. Die Zusammenarbeit ist Teil des Grossprojekts „Manufhaptics“, das zum Strategischen Fokusbereich „Advanced Manufacturing“ des ETH-Bereichs gehört. Ziel des Projekts ist es, einen Handschuh zu entwickeln, der virtuelle Welten greifbar macht. Hier sollen die künstlichen Muskeln durch Widerstand das Greifen von Gegenständen simulieren.

Wenn wir sie noch etwas dünner machen, kommen wir der Funktionsweise von echten Muskelfasern schon recht nahe.

Dorina Opris

Die weichen Aktoren haben jedoch weitaus mehr Anwendungsmöglichkeiten. Sie sind leicht, geräuschlos und, dank dem neuen 3D-Druck-Verfahren, beliebig formbar. Sie könnten herkömmliche Aktoren in Autos, Maschinen und in der Robotik ersetzen. Entwickelt man sie noch weiter, kommen sie auch für medizinische Anwendungen in Frage. Dorina Opris und Patrick Danner arbeiten bereits daran: Mit ihrem neuen Verfahren lassen sich nicht nur komplexe Formen drucken, sondern auch lange elastische Fasern. „Wenn wir sie noch etwas dünner machen, kommen wir der Funktionsweise von echten Muskelfasern schon recht nahe“, so Opris. In Zukunft könnte man aus solchen Fasern womöglich ein ganzes Herz drucken, glaubt die Forscherin. Bis ein solcher Traum Wahrheit wird, gibt es allerdings noch viel zu tun.

(ID:50354098)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung