Ventilator Auf der Suche nach der optimalen Luftströmung

Quelle: HS Coburg 3 min Lesedauer

Anbieter zum Thema

Große industrielle Lüftungsanlagen funktionieren so gut, dass sie im Alltag kaum wahrgenommen werden, haben allerdings einen Nachteil: den Energieverbrauch. Zumal die Ökodesign-Richtlinie für Industrieventilatoren kommendes Jahr verschärft werden soll. Neue Lösungen müssen her.

Doktorand Manuel Fritsche hat ein neues Verfahren für die Simulation und Auslegung von Luftströmen an Ventilatoren entwickelt. (Bild:  Natalie Schalk / Hochschule Coburg)
Doktorand Manuel Fritsche hat ein neues Verfahren für die Simulation und Auslegung von Luftströmen an Ventilatoren entwickelt.
(Bild: Natalie Schalk / Hochschule Coburg)

Im Autobahntunnel oder dem Einkaufszentrum kann nicht einfach mal schnell ein Fenster geöffnet werden – dass hier trotzdem keine dicke Luft herrscht, ist moderner Technik zu verdanken.

Dennoch gibt es im Bereich der Ventilatoren Handlungsbedarf. Grund ist eine EU-Verordnung: Nr. 327/2011 als Teil der ErP Richtlinie 2009/125/EG schreibt immer strengere Anforderungen an die Energieeffizienz für diese Maschinen vor. „Der Mindestwirkungsgrad wird vom Gesetzgeber mit der Zeit systematisch erhöht“, sagt Manuel Fritsche. „Das stellt für Ventilatorenhersteller eine ernstzunehmende technische Herausforderung dar.“ In seiner Doktorarbeit an der Hochschule Coburg und der FAU Erlangen-Nürnberg hat Manuel Fritsche dafür eine Lösung entwickelt.

Strömungen sind komplexe Vorgänge

Er sitzt an einem Rechner im Labor für Strömungsmechanik der Hochschule Coburg; die beiden großen Bildschirme vor ihm zeigen ineinanderfließendes Pink, Gelb und Grün. „Numerische Strömungssimulationen“, erklärt er. Um sie darzustellen, wird berechnet, wie verschiedene Faktoren die Luftströmung am Ventilator beeinflussen.

„Strömungen sind komplexe Vorgänge: Da gibt’s Turbulenz, Dreidimensionalität, Instationarität.“ Vom Zusammenspiel hängt ab, wie Luftströme fließen. Wenn zum Beispiel am Ventilatoren-Blatt eine Verwirbelung entsteht, wird die Energie nicht gut umgesetzt; der Wirkungsgrad ist schlecht. Im Idealfall strömt die Luft einfach entlang der Schaufel des Ventilators. „Wie die optimale Strömungsführung ist, haben sich Ingenieure und Ingenieurinnen schon früher überlegt“, berichtet Fritsche. „Man hat dann mehrere Prototypen erstellt und getestet, was am besten funktioniert.“ Seit etwa 20 Jahren verlagern sich diese Tests immer mehr in Computersimulationen und statt wie früher ein paar Prototypen zu bauen, hat der 34-Jährige für seine Doktorarbeit Tausende Simulationen durchgeführt.

Wo bisher bekannte Verfahren scheitern

Vor dem Windkanal im Strömungslabor der Hochschule Coburg diskutieren Hochschul-Präsident Prof. Dr. Stefan Gast, Manuel Fritsche und Prof. Dr. Phillip Epple (v.r.) darüber, wie das neue Verfahren die Energieeffizienz von Lüftungsanlagen verbessert.(Bild:  Natalie Schalk / Hochschule Coburg)
Vor dem Windkanal im Strömungslabor der Hochschule Coburg diskutieren Hochschul-Präsident Prof. Dr. Stefan Gast, Manuel Fritsche und Prof. Dr. Phillip Epple (v.r.) darüber, wie das neue Verfahren die Energieeffizienz von Lüftungsanlagen verbessert.
(Bild: Natalie Schalk / Hochschule Coburg)

Bei den altbekannten Auslegungsverfahren wird von einer zylindrischen Nabenform und aerodynamisch profilierten Schaufeln ausgegangen, für die empirische Profildaten benötigt werden. Niederdruck-Axialventilatoren werden in der industriellen Praxis aus Kosten- und Fertigungsgründen allerdings meist mit dreidimensional gebogenen Schaufeln aus gleichbleibend dickem Blech hergestellt. Dafür hat Fritsche eine „Simulationsgetriebene Auslegungs- und Optimierungsstrategie für den Anwendungsfall eines Axialventilators mit Leitapparat“ entwickelt.

Für die überdurchschnittliche Leistung dieser Doktorarbeit wurde er mit „Magna Cum Laude“ ausgezeichnet. Betreut wurde die kooperative Promotion an der Fakultät Maschinenbau und Automobiltechnik der Hochschule Coburg von Prof. Dr. Philipp Epple, Leiter des Labors für Strömungsmechanik, sowie von Prof. Dr. Antonio Delgado vom Lehrstuhl für Strömungsmechanik der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Prof. Dr. Philipp Epple von der Hochschule Coburg, Doktorand Manuel Fritsche mit 3D-gedruckten Prototypen der entwickelten Ventilator-Laufräder und Prof. Dr.  Antonio Delgado von der Friedrich-Alexander-Universität Erlangen-Nürnberg (v.l.).(Bild:  Christian Voll)
Prof. Dr. Philipp Epple von der Hochschule Coburg, Doktorand Manuel Fritsche mit 3D-gedruckten Prototypen der entwickelten Ventilator-Laufräder und Prof. Dr. Antonio Delgado von der Friedrich-Alexander-Universität Erlangen-Nürnberg (v.l.).
(Bild: Christian Voll)

Epple freut sich sehr über das abgeschlossene Promotionsverfahren seines wissenschaftlichen Mitarbeiters. Fritsche ist mit der Hochschule schon lange verbunden. Er lebt in Ebensfeld im Kreis Lichtenfels, hat an der Fakultät Maschinenbau- und Automobiltechnik der Hochschule Coburg bereits sein Diplom- und sein Masterstudium absolviert und bleibt nach der Promotion als Postdoc an der Fakultät. Sein Coburger Doktorvater Epple dankt dem Dekan Prof. Dr. Alexander Rost für die Unterstützung dieses Promotionsverfahrens. „Mein besonderer Dank gilt außerdem der Hochschulleitung“, sagt Epple. „Insbesondere unser Präsident Prof. Dr. Stefan Gast und unser Vize-Präsident für Forschung, Prof. Dr. Martin Synold, haben die notwendigen Rahmenbedingungen geschaffen und unterstützen Forschung und Promotionsvorhaben stetig.“

Wissenschaft und Industrie: ein erfolgreiches Transferprojekt

Präsident Gast kommt selbst aus der Fakultät Maschinenbau- und Automobiltechnik, hat Fritsches Arbeit einige Zeit aus nächster Nähe erlebt und freut sich sehr, dass die Forschungsergebnisse aus dieser Doktorarbeit in die industrielle Praxis transferiert werden. Die Dissertation ist Teil eines Kooperationsprojekts zwischen der Hochschule Coburg und einem Ventilatorenhersteller, das über das Zentrale Innovationsprogramm Mittelstand (ZIM) des Bundeswirtschaftsministeriums gefördert wird.

Mit Hilfe von Prototypen des Industriepartners wurde Fritsches neues Auslegungs- und Optimierungsverfahren validiert. „Als Handmuster hat mir außerdem das Institut für Prototypen- und Modelltechnik der Hochschule Coburg Ventilatoren im 3D-Druckverfahren erstellt“, ergänzt der Doktorand.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung

Axialventilatoren mit optimalem Betriebsverhalten auslegen

Auf Basis seiner Forschung können Axialventilatoren nun mit nennenswerten Wirkungsgradsteigerungen und optimiertem Betriebsverhalten ausgelegt werden. Das trägt dazu bei, die künftig strengere EU-Richtlinie zu erfüllen. Überall dort, wo wie im Parkhaus oder Einkaufszentrum große Lüftungsanlagen eingesetzt werden, kann das entwickelte Verfahren die Energieeffizienz von Ventilatoren verbessern – und das trifft den eigentlichen Kern der manchmal sperrigen Verordnungen der EU: Es ist ein Beitrag zum Klimaschutz.

(ID:50097278)