Additive Fertigung Additive Fertigung von Metall wird effizienter, günstiger und nachhaltiger

Quelle: Pressemitteilung 4 min Lesedauer

Anbieter zum Thema

In dem EU-Projekt InShaPe haben die Projektpartner die Additive Fertigung von Metallen optimiert. Dafür kombinierten die Forscher die KI-gesteuerte Strahlformung mit multispektraler Bildgebung (MSI) beim pulverbett-basierten Schmelzen von Metallen (PBF-LB/M). Das Ergebnis: Fertigungsrate versechsfacht, Produktionskosten halbiert, Energieverbrauch und Materialausschuss deutlich reduziert.

Fertigungsrate versechsfacht, Produktionskosten halbiert, Energieverbrauch und Materialausschuss deutlich reduziert bei gleichzeitig verbesserter Bauteilqualität – so lässt sich die Bilanz der Forschungsergebnisse des EU-Projektes InShaPe zusammenfassen. (Bild:  Frederik Watzka)
Fertigungsrate versechsfacht, Produktionskosten halbiert, Energieverbrauch und Materialausschuss deutlich reduziert bei gleichzeitig verbesserter Bauteilqualität – so lässt sich die Bilanz der Forschungsergebnisse des EU-Projektes InShaPe zusammenfassen.
(Bild: Frederik Watzka)

Die pulverbett-basierte additive Fertigung von Metallen gilt mittlerweile als zentrale Technologie, um komplexe Metallbauteile herzustellen. Dennoch sorgen starre Laserstrahlprofile und unzureichende Prozessüberwachungsmethoden häufig für Probleme im Schmelzvorgang und können zu Materialfehlern und Produktionsstopps führen. Dies verursacht Ausschuss, erhöht den Energieverbrauch und die Produktionskosten und verlangsamt grundsätzlich den Produktionsprozess. In dem EU-Projekts InShaPe hat sich ein Konsortium diesen Herausforderungen gestellt und in seiner Forschungsarbeit einen neuen Fertigungsansatz entwickelt, der KI-gesteuerte Strahlformung und multispektrale Bildgebung kombiniert. Ziel des Projektes war es, Effizienz, Wirtschaftlichkeit und Nachhaltigkeit dieses Fertigungsverfahrens deutlich zu verbessern. Diese Innovationen haben die Projektpartner an fünf anspruchsvollen industriellen Demonstratoren aus der Luft- und Raumfahrt, dem Energiesektor und dem Maschinenbau erfolgreich erprobt. Die Professur für Laser-based Additive Manufacturing der Technischen Universität München (TUM) koordinierte das Projekt und führte es gemeinsam mit zehn weiteren Partnern aus acht Ländern durch. Die Europäische Union förderte InShaPe mit 7,2 Mio. Euro aus dem Rahmenprogramm „Horizon Europe“.

Buchtipp

Das Buch "Additive Fertigung" beschreibt Grundlagen und praxisorientierte Methoden für den Einsatz der additiven Fertigung in der Industrie und unterstützt Konstrukteure und Entwickler dabei, additive Verfahren erfolgreich in ihren Unternehmen zu implementieren.

Mehr erfahren bei Vogel Fachbuch

Produktivität versechsfacht – Neuer Fertigungsprozess überzeugt in der Praxis

Den Projektpartnern von InShaPe ist es gelungen, die Produktivität des PBF-LB/M-Prozesses erheblich zu steigern. Bei verschiedenen industriellen Anwendungen erreichten sie Produktivitätssteigerungen von über 600 Prozent (6,2 x), einschließlich Fertigungsraten von bis zu 93,3 cm³/h bei Inconel 718-Bauteilen. Die ursprüngliche Fertigungsrate betrug 15 cm³/h. Gleichzeitig hat es das Konsortium geschafft, die Kosten um 50 Prozent zu reduzieren und damit ein wichtiges Projektziel zu erreichen. Inconel 718 ist eine Nickel-Chrom-Legierung, die sich durch hohe Festigkeit, Korrosionsbeständigkeit und Wärmebeständigkeit auszeichnet. Sie wird häufig für Bauteile eingesetzt, die hohen Temperaturen, Drücken oder korrosiven Umgebungen ausgesetzt sind, wie z.B. in der Luft- und Raumfahrt.

Bildergalerie
Bildergalerie mit 6 Bildern

Die Innovation der Strahlformung und der multispektralen Bildgebung (MSI) demonstrierten die Projektpartner an fünf industriellen Anwendungsfällen: ein Impeller für die Luft- und Raumfahrt (Inconel 718), ein industrielles Gasturbinenteil (Inconel 718), ein Teil einer Raumfahrtbrennkammer (CuCrNb), ein Zylinderkopf eines Kettensägenmotors (AlSi10Mg) und Komponenten von Satelliten-Antennen für die Raumfahrt-Kommunikation.

KI-gesteuerte Strahlformung und multispektrale Bildgebung im Zusammenspiel

Die intelligente Strahlformung und multispektrale Bildgebung arbeiten eng zusammen, um den additiven Fertigungsprozess deutlich zu verbessern. Das Laserstrahlprofil wird bauteilspezifisch angepasst, wobei Geometrie und Material gezielt berücksichtigt werden. Das verbessert die Qualität des Bauteils und ermöglicht eine schnellere Verarbeitung, da Fehler wie Risse oder Spritzer und Kondensatbildung reduziert werden, die sonst Nacharbeit und/oder Ausschuss verursachen. Als besonders vorteilhaft für vielfältige Anwendungen hat sich in der Forschungsarbeit von InShaPe ein ringförmiges Strahlprofil − in Verbindung mit optimierten Scanning-Strategien – erwiesen. Dabei wird die Laserenergie gezielt nicht mittels Gaußprofil, sondern über eine ringförmige Intensitätsverteilung eingebracht, um so das Schmelzbad zu erzeugen. Dies führt zu einer stabileren Schmelzzone und einer gleichmäßigeren Materialbearbeitung.

Parallel dazu erfasst die neue multispektrale Bildgebung Signale in unterschiedlichen Wellenlängenbereichen und überwacht den PBF-LB/M-Prozess in Echtzeit. So lassen sich thermische Veränderungen im Schmelzbad frühzeitig erkennen. Die erfassten Daten fließen direkt in die Prozessregelung ein. Fehler, die früher zu Produktionsunterbrechungen oder Nacharbeit führten, können nun behoben werden, wodurch der Prozess ohne große Verzögerungen weiterlaufen kann.

Wir freuen uns darauf, dass diese Technologie in naher Zukunft in industrielle Systeme einfließen und zu Fortschritten bei der Prozesskontrolle, Qualitätssicherung und Anwendungsleistung in verschiedenen Sektoren führen wird.

Prof. Dr.-Ing. Katrin Wudy

Wegbereiter für die industrielle Einführung der Serienfertigung

Insgesamt markiert dieser Ansatz einen wichtigen Fortschritt auf dem Weg zur industriellen Serienfertigung mit PBF-LB/M: Das Zusammenspiel von intelligenter Strahlformung und MSI-basierter Prozesssteuerung führt zu einem stabileren Schmelzverlauf, reduziert Fehlerquellen und ermöglicht einen gezielten, ressourcenschonenden Energieeinsatz. Dadurch lassen sich komplexe Metallbauteile schneller, kostengünstiger und nachhaltiger produzieren – bei gleichzeitig höherer Qualität und deutlich gesteigerter Produktivität. Damit ebnet InShaPe den Weg für eine beschleunigte industrielle Einführung von KI-gesteuerter Strahlformung und MSI-basierter Prozesssteuerung und stärkt den technologischen Fortschritt in der additiven Fertigung – insbesondere für die Luft- und Raumfahrt, die Energie- und Automobilbranche. „Das Interesse von Wissenschaft und Industrie an unserer Arbeit ist groß. Wir freuen uns darauf, dass diese Technologie in naher Zukunft in industrielle Systeme einfließen und zu Fortschritten bei der Prozesskontrolle, Qualitätssicherung und Anwendungsleistung in verschiedenen Sektoren führen wird“, so InShaPe-Koordinatorin Prof. Dr.-Ing. Katrin Wudy von der School of Engineering and Design der Technischen Universität München.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung

(ID:50499713)