Suchen

Faserverbundkunststoff Leichtere Bauteile für Flugzeuge, Autos und Windräder

| Redakteur: Juliana Pfeiffer

Ein interdisziplinäres Forscherteam aus vier Instituten der Fachhochschule Köln entwickelt im Forschungsprojekt ISAFAN (Intelligente Schadensvorhersage an Faserverbundkunststoff-Bauteilen in industriellen Anwendungen) faserverstärkte Bauteile mit eingebauten Sensoren.

Firmen zum Thema

Das Forschungsprojekt ISAFAN (Intelligente Schadensvorhersage an Faserverbundkunststoff-Bauteilen in industriellen Anwendungen) der Fachhochschule Köln arbeitet an der Optimierung von Faserverbundkunststoffen, etwa zum Bau von Windrädern und Flugzeugen oder in der Automobilindustrie.
Das Forschungsprojekt ISAFAN (Intelligente Schadensvorhersage an Faserverbundkunststoff-Bauteilen in industriellen Anwendungen) der Fachhochschule Köln arbeitet an der Optimierung von Faserverbundkunststoffen, etwa zum Bau von Windrädern und Flugzeugen oder in der Automobilindustrie.
(Bild: fotolia.com/Pedro Salaverria)

Das Forschungsprojekt ISAFAN (Intelligente Schadensvorhersage an Faserverbundkunststoff-Bauteilen in industriellen Anwendungen) dient der Optimierung von Faserverbundkunststoffen, etwa zum Bau von Windrädern und Flugzeugen oder in der Automobilindustrie. Die faserverstärkten Bauteile mit eingebauten Sensoren liefern permanent Informationen über den Zustand der Werkstücke. Zeitgleich werden in dem Projekt statistische Methoden erarbeitet, die Schadensentwicklungen oder das Versagen von Teilen vorhersagen. Wartungen oder der Austausch von Komponenten können so effizient geplant werden. ISAFAN wird durch das Landesprogramm „FH Struktur“ mit 240.000 Euro gefördert und voraussichtlich bis Ende 2017 laufen.

Elemente aus Faserverbundkunststoffen sind im Verhältnis zu ihrem Gewicht sehr stabil. So ist beispielsweise Carbon nur etwa ein Viertel so schwer wie Stahl, verfügt aber über eine doppelt so große Steifigkeit. Der Nachteil: Ihr Schadensverhalten ist äußerst komplex, Schäden sind nur mit sehr großem Aufwand zu entdecken und führen im ungünstigsten Fall zum schlagartigen Totalversagen der gesamten Struktur. Um trotz dieser Probleme die Sicherheit zu gewährleisten, werden häufig größer dimensionierte Bauteile verwendet als für die Konstruktion erforderlich. Eine dauerhafte Überwachung und Prognostizierung der Restlebensdauer könnte dafür sorgen, dass die Potentiale der Leichtbauweise besser ausgeschöpft werden.

Mathematische Modelle zur Schadensentwicklung und -prognose

„Bei ISAFAN arbeiten Experten aus den Bereichen Sensorik, Statistik, Werkstoff und Anwendung zusammen. Im Bereich der Faserverbundkunststoffe ist diese interdisziplinäre Forschergruppe europaweit einmalig. Die Zusammenarbeit der vier Institute ist ein Alleinstellungsmerkmal und ein wichtiger Erfolgsfaktor“, erläutert Prof. Dr. Jochen Blaurock vom Institut für Produktentwicklung, Produktion und Qualität der Hochschule und Sprecher des Forschungsprojektes. Gemeinsam mit Prof. Dr. Simone Lake, Lehrgebiet „Kunststofftechnik und Produktentwicklung“ der Fakultät für Informatik und Ingenieurwissenschaften, bearbeitet Blaurock bei ISAFAN die Bereiche Anwendung, Werkstoffe und Analyse von Materialversagen.

Prof. Dr. Michael Bongards vom Institut für Automation & Industrial IT wird die Sensor- und Messtechnik erstellen und die gesammelten Daten zur Auswertung aufbereiten. Prof. Dr. Thomas Bartz-Beielstein vom Institut für Informatik entwickelt mathematische Modelle zur Schadensentwicklung und -prognose. Prof. Dr. Frank Hermann vom Institut für Fahrzeugtechnik ist Experte auf dem Gebiet der Sensorplatzierung und wird die Erkenntnisse des Forschungsprojekts auf Anwendungen in der Automobilindustrie übertragen.

„Zurzeit befinden wir uns in der ersten Projektphase und definieren die grundlegenden Probleme und Fragestellungen, auf die wir unsere Forschungsanstrengungen konzentrieren. Dafür führen wir etwa Interviews mit potenziellen Anwendern in der Industrie, um den Forschungsbedarf zielgenau zu ermitteln“, erläutert Blaurock. Studierende werden frühzeitig über Bachelor- und Masterarbeiten in das Projekt eingebunden. In Kooperation mit beispielsweise den englischen Hochschulen University of Leeds und Cranfield University sollen Promotionen im Forschungsbereich vergeben werden. Die ersten Veröffentlichungen in Fachzeitschriften und eine Ringvorlesung sind für das kommende Jahr geplant.

Betriebszeiten von Windkraftanlagen erhöhen

Faserverbundkunststoffe spielen in zahlreichen Industriezweigen bereits eine wichtige Rolle. So sind etwa die Flügel von Windkraftanlagen aus Glasfaserkunststoffen gefertigt. Eine permanente automatische Überwachung der sehr stark belasteten Teile könnte die Betriebszeiten der Anlagen erhöhen und die Anzahl der sehr aufwendigen Wartungen an den schwer zugänglichen Flügeln verringern. Besonders in Offshore‐Parks ist die Reduzierung von personalintensiven Inspektionen vor Ort wichtig, da die Anlagen nur sehr schwer zu erreichen sind.

Für die Automobilindustrie ist es von besonderem Interesse, nicht sichtbare Schäden in Faserverbundkunststoffen zu erkennen, bevor Bauteile ausfallen. Dies könnte zum Beispiel die Zulassung von Vollcarbonräder ermöglichen. Diese tragen erheblich zur Reduzierung des Verbrauchs bei und verbessern die Fahrsicherheit. In Deutschland sind sie jedoch noch nicht zugelassen, da eine zuverlässige Lebensdauervorhersage nicht möglich ist. Bereits eingesetzt werden Karosserien, die vollständig aus Carbon gefertigt sind. Die ersten auf diese Weise gefertigten Elektrofahrzeuge sind bereits auf dem Markt. Somit bestehen in dieser Branche besonders interessante Anwendungsmöglichkeiten für die neu entwickelten Sensoren und Vorhersagemodelle. (jup)

(ID:43062019)